837. Infrared Absorption of Heteroaromatic and Benzenoid Six-membered, Monocyclic Nuclei. Part IV. ${ }^{1}$ Monosubstituted Benzenes.

By A. R. Katritzey and (Mrs.) J. M. Lagowshi.

The infrared absorption due to the phenyl group in eighty-five compounds is recorded. The variations of the positions and the intensities of the characteristic bands with the nature of the substituent are discussed.

In monosubstituted pyridines, ${ }^{1,2,3}$ pyridine 1 -oxides, ${ }^{4,5,6}$ pyridine-boron trichlorides, ${ }^{7}$ and furans ${ }^{8}$ all the bands, with few exceptions, are characteristic of either the nucleus or the substituent. Further, the position and intensity of each nuclear band are either
${ }^{1}$ Part III, Katritzky, Hands, and R. A. Jones, J., 1958, 3165. Parts I-III were published under the series title " Infrared studies of heterocyclic compounds."
${ }^{2}$ Katritzky and Gardner, $J ., 1958,2198$.
${ }^{3}$ Katritzky and Hands, J., 1958, 2202.
${ }^{4}$ Katritzky and Gardner, J., 1958, 2192.
5 Katritzky and Hands, J., 1958, 2195.
6 Katritzky, Beard, and Coates, unpublished work.
7 Katritzky, unpublished work.
${ }^{8}$ Katritzky and Lagowski, J., in the press.
reasonably constant or vary regularly with the type of substituent to which the nucleus is attached. We examined monosubstituted benzenes (i) to check the bands due to the phenyl groups in the pyridines and pyridine l-oxides, (ii) to investigate the variations in the positions and intensities of the benzenoid nuclear bands with the nature of the substituent, and (iii) to compare the bands due to substituents in these compounds with those due to the same substituents in the heterocyclic compounds. We needed the information under (ii) to explain the intensity variation of nuclear bands in the heterocyclic compounds in terms of the variation of the dipole-moment during the vibration (see following paper).

The spectra were measured in chloroform, and apparent extinction coefficients were recorded. ${ }^{9}$ Solvent absorption obscured the out-of-plane $\mathrm{C}-\mathrm{H}$ deformation modes ${ }^{10 a, 11 a}$ below $800 \mathrm{~cm} .^{-1}$; the concentration used was not sufficient to distinguish the combination frequencies ${ }^{10 b, 11 b}$ between 2000 and $1650 \mathrm{~cm} . .^{-1}$, and the sodium chloride prism gave poor resolution of the $\mathrm{C}-\mathrm{H}$ stretching modes ${ }^{10 c, 11 c}$ in the $3000 \mathrm{~cm} .^{-1}$ region. Thus, this work is concerned with modes of predominantly $\mathrm{C}-\mathrm{C}$ stretching at $1600-1400 \mathrm{~cm} . .^{-1}$ and CH inplane deformation character at $1200-1000 \mathrm{~cm} .^{-1}$; six bands were characteristic (Table 1), and four others appeared only in certain types of compound (Table 2 and text).

Randle and Whiffen ${ }^{12}$ treated statistically the spectra of many monosubstituted benzenes and listed arithmetical means and standard deviations for twenty characteristic bands. They obtained data from many sources measured under varying conditions and were unable to give precise intensities or to correlate the intensity or position of a band with the type of substituent. Of the twenty bands, ten correspond to those given in Tables 1 and 2 (of. last row). Three bands below $800 \mathrm{~cm} .^{-1}$ and one at $c a .1240 \mathrm{~cm} .^{-1}$ would be obscured by solvent in our work; the remaining six, near $837(\mathrm{w}), 962(\mathrm{w}), 982(\mathrm{vw})$, $1324(\mathrm{w}), 1387(\mathrm{w})$, and $1663(\mathrm{w}) \mathrm{cm} .^{-1}$, are evidently too weak to be distinguished under our conditions. Early work has been summarised. ${ }^{13}$ Bellamy ${ }^{11 d}$ indicates that monosubstituted benzenes absorb at $1600 \pm 5 \mathrm{~cm} .^{-1}$, near 1580 and $1500 \mathrm{~cm} .^{-1}$, and in each of the regions 1175-1125 (weak), 1110-1070, and $1070-1000 \mathrm{~cm} .^{-1}$. The only indication of the position depending on the substituent was that bromo-, chloro-, and mercaptobenzene absorb near $1595 \mathrm{~cm} .^{-1}$ but nitrobenzene near $1605 \mathrm{~cm} .^{-1}$. The intensities were stated to be " notorious for very wide fluctuations"; the $1580 \mathrm{~cm} .^{-1}$ band was very weak except when conjugated with a nitro-, carbonyl, or unsaturated group. Such conjugation was stated to enhance markedly, in most cases, the intensity of the 1600 and $1500 \mathrm{~cm}^{-1}$ bands also, but occasionally the $1500 \mathrm{~cm} .^{-1}$ band became less intense. Jones and Sandorfy ${ }^{106}$ state that the simpler aromatic compounds absorb between $1610-1590$ and $1500-1480 \mathrm{~cm}^{-1}$; their intensity data compare reasonably well with ours. Twenty monosubstituted benzenes showed ${ }^{14}$ four characteristic bands in the $1600-1400 \mathrm{~cm}^{-1}$ region; the frequencies of the eleven compounds which we too have measured agree well; our peaks are $[0.7 \pm 2 \cdot 4] \mathrm{cm} .^{-1}$ higher. Four bands found by McMurry and Thornton ${ }^{15}$ at $1200-800 \mathrm{~cm} .^{-1}$ are discussed below.

Band Near $1600 \mathrm{~cm}^{-1}$ (Table 1, col. 1).-A band occurs at $1611-1599[1604 \pm 3] \ddagger \mathrm{cm}^{-1}$ for all the compounds except that the frequency is lowered to $1588-1581 \mathrm{~cm} .^{-1}$ if a heavy atom (Cl, Br, or SH ; Nos. $67-69$) is attached directly to the nucleus (similar behaviour is found in other series ${ }^{1-6}$); in the only other exception, No. 49 , the band is due mainly to

[^0]substituent absorption. The intensity is high (125-290) [200 ± 55)] \ddagger for compounds with strong electron-donating substituents (Nos. 1-15), intermediate ($25-45$) for the sulphonamido-compounds (Nos. 16-17), and low (5-35) [(20 $\pm 7)]$ for compounds with a saturated carbon atom or a carbon-carbon multiple bond attached directly to the nucleus (Nos. 18-66). Higher intensities are shown again for halogeno- and thio-compounds (Nos. 67-69) (40-60) and for compounds carrying other electron-withdrawing substituents (Nos. 71-85) (30-80) [(50 $\pm 20)]$ except cyanobenzene (No. 70).

Band Near $1580 \mathrm{~cm}^{-1}$ (Table 1, col. 2).-Compounds with a saturated carbon atom adjacent to the ring (Nos. 18-46) show only a weak shoulder or do not absorb in this region, but an olefinic group next to the ring (Nos. 47-55) consistently causes absorption at $1581-1579 \mathrm{~cm}^{-1}(10-30)$. Shoulders sometimes occur for the ethynyl- and arylsubstituted compounds (Nos. 56-66), but the region is obscured too often by substituent absorption to permit generalisation. The halogeno-compounds show weak shoulders at $c a .1562 \mathrm{~cm} .^{-1}$. The band is stronger for compounds with electron-withdrawing substituents (Nos. $71-85$), $1588-1580 \mathrm{~cm} .^{-1}(20-70)\left[1585 \pm 3 \mathrm{~cm} .^{-1}(35 \pm 10)\right]$, except for the cyano-compound (No. 70). Compounds with electron-donating substituents show a strong band at ca. $1600 \mathrm{~cm} .^{-1}$ which often masks this region; however, the ethers (Nos. 6-8) exhibit a well resolved band at ca. $1590 \mathrm{~cm}^{-1}$ (ca. 85). Thus, for benzyloxybenzene (No. 8) the band is due to the phenolic ring. The absorption bands shown by benzanilide and N-methylbenzanilide (Nos. 12, 14) are associated with the benzoyl rings, because acetanilide and N-methylacetanilide (Nos. 13, 15) do not show resolved bands.

Band Near $1500 \mathrm{~cm} .^{-1}$ (Table 1, col. 3).-Nearly all the compounds show a band at $1511-1477 \mathrm{~cm}^{-1}$. Electron-donating groups (Nos. 1-17) cause absorption at $1511-$ $1493[1498 \pm 5] \mathrm{cm} .^{-1}$, which is somewhat higher than for compounds with a saturated, olefinic, or acetylenic carbon atom adjacent to the ring (Nos. 18-59) absorbing at 1500 $1490[1494 \pm 2] \mathrm{cm}^{-1}$ (except Nos. 23, 31, and 42 where most of the absorption arises from the substituent). An aromatic ring directly attached to the nucleus (Nos. 60-66) lowers the frequency to $1483-1470 \mathrm{~cm} .^{-1}$ and a heavy atom (Nos. $67-69$) to $1483-1477 \mathrm{~cm} .^{-1}$. Intensities are high ($100-220$) $[(145 \pm 40)]$ for compounds with electron-donating (including sulphonamido-, halogeno-, and thio-)substituents (Nos. 1-17, 66-69), intermediate ($15-65$) $[(40 \pm 10)]$ for saturated or olefinic substituents (Nos. 18-55), but variable ($55-230$) for the ethynyl-substituents (Nos. 56-59). The band is weak or absent for compounds carrying electron-withdrawing substituents (Nos. 71-86) except cyanobenzene.

Band Near $1450 \mathrm{~cm}^{-1}$ (Table 1, col. 4).-Strong absorption (210-340) is shown by non-N-substituted-carbonamido-compounds (Nos. 10, 13, 15) at $1447-1440 \mathrm{~cm} .^{-1}$; other electron-donating substituents (Nos. 1-9, 16-7) cause absorption at $1465-1445 \mathrm{~cm} .^{-1}$ (25-45) $\left[1456 \pm 7 \mathrm{~cm} .^{-1}(30 \pm 10)\right]$. Nuclei with a saturated substituent (Nos. 18-46) absorb at $1458-1450[1454 \pm 2] \mathrm{cm}^{-1}$; the intensities are intermediate (25-65) [$(45 \pm 15)]$ except for the methyl esters Nos. 26 and 52 where the band is strongly overlapped by methoxyl absorption and, inexplicably, the 2-pyridylthiomethyl compound, No. 38. Compounds with an olefinic carbon atom adjacent to the ring (Nos. 47-55) absorb at $1452-1450 \mathrm{~cm} .^{-1}(30-80)\left[1451 \pm 1 \mathrm{~cm} .^{-1}(50 \pm 20)\right]$ with an acetylenic carbon atom (Nos. 56-59) at $1445-1443 \mathrm{~cm} .^{-1}(20-25)$, with an aromatic ring (Nos. $61-66$) at $1455-1451 \mathrm{~cm} .^{-1}$ (except in diphenyl where the band is split) ($10-110$), and with a heavy atom (Nos. 66-69) at 1447-1446 cm. ${ }^{-1}$ (30-60). Electron-accepting substituents (Nos. $70-85$) cause absorption at $1455-1448 \mathrm{~cm}^{-1}$ (25-75, except for No. 79 where the band is overlapped by substituent absorption), but the nitro-compound shows only a weak

[^1]Table 1.

		$\begin{gathered} A_{1} \\ \nu \mathrm{CC} \end{gathered}$		$\begin{gathered} B_{1} \\ \nu \mathrm{CC} \end{gathered}$	$\stackrel{A_{1}}{\nu \mathrm{CC}}$		$\stackrel{B_{1}}{\nu \mathrm{CC}}$		$\stackrel{\stackrel{B}{\mathrm{~B}} \mathrm{H}}{\mathrm{~B}}$		$\begin{gathered} A_{1} \\ \beta \mathrm{H} \end{gathered}$	
No．	Substituent	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1} \varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$	$\mathrm{cm} .^{-1}$	A	$\mathrm{cm} .^{-1}$	$\varepsilon_{\text {A }}$
1	NMe_{2}	1605	250	1577＊ 40	1500	140	（－）		（－		1030	35
2	NHMe ${ }^{\text {a }}$	1610	290		1511	220	1453	30	1072	25	1022	5
3	$\mathrm{NH} \cdot \mathrm{Ph}^{\text {a }}$	1598	480	（－）	$\left\{\begin{array}{l}1514 * \\ 1498\end{array}\right.$	340 380	1464		1081	20	1026	40
4	$\mathrm{NH} \cdot 4 \mathrm{Py}$	1610＊	130	（－）	1499＊	150	1445	45	1074	15	1029	15
5	NH_{2}	1605	125		1495	110	1465	25			1026	10
6	OMe	1601	140	1591＊ 85	1494	135	1453	40	1077	45	1018＊	35
7	OEt	1602	135	158980	1494	120	1458	25	1076	40		
8	$\mathrm{OCH}_{2} \cdot \mathrm{Ph}$	1602	150	159090	1493	170	1453	60	1075	35	1027	85
9	$\mathrm{OH}^{\text {a }}$	1603	170		1503	170	（－		1069	40	1023	15
10	$\mathrm{NH} \cdot \mathrm{CO}_{2} \mathrm{Et}{ }^{\text {a }}$	1601	200	$(-)$	1505＊	145	1447	340	（－		$1024 \dagger$	95
11	$\mathrm{NMe} \cdot \mathrm{COMe}$	1601	240	（－）	1497	190	（－		1073	20	1023	25
12	$\mathrm{NMe} \cdot \mathrm{COPh}$	1600	260	1583140	1496	$250\{$	$\begin{aligned} & 1460^{*} \\ & 1448 \end{aligned}$	$\begin{aligned} & 60 \\ & 80 \end{aligned}$	1075	45	1031	45
13	$\mathrm{NH} \cdot \mathrm{COMe}^{\text {a }}$	1604	210		$\left\{\begin{array}{l} 1502 \\ 1488 * \end{array}\right.$	$\begin{array}{r} 220 \\ 70 \end{array}$	1442	270	1077	15	1030	30
14	$\mathrm{NH} \cdot \mathrm{COPh}^{\text {d }}$	1604	225	158185	$(\mathrm{CHCl}$	1_{3} ）	$\left(\mathrm{CHCl}^{2}\right.$		1072	80	1026	55
15	$\mathrm{NH} \cdot \mathrm{COCH}_{2} \cdot 4 \mathrm{Py}$	$1602 \dagger$	260		1500＊	160	1440	210	1078	10		
16	$\mathrm{NMe} \cdot \mathrm{SO}_{2} \mathrm{Me}$	1603	25		1494	100	1455	25	1075＊	55	1025	25
17	$\mathrm{NH} \cdot \mathrm{SO}_{2} \mathrm{Me}$	1605	45		1495	100	1460＊	20	1077	20	1029	25
18	Me	1603	20		1496	45	1455	25	1081	20	1028	20
19	Et	1609	15		1495	35	1454	50			1028	20
20	$\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{Ph}$	1605	40		1494	90	1454	80	1066	20	1028	35
21	$\mathrm{CH}_{2}{ }^{-\mathrm{CH}_{2}} \cdot 4 \mathrm{Py}$			（－）	1496	50	1455	45	$1070 \dagger$	20	1030	15
22	$\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot 2 \mathrm{Py}$		）	（－）	1495	45	1454	40	1071	15	1030	10
23	$\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot 4 \mathrm{PyO}$	1606	15		1487 †	280	$1451 \dagger$	90	1072	15	1030＊	15
24	$\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot 2 \mathrm{PyO}$	1606	20		$1491 \dagger$	105	1453＊	65	1071	15	1030	10
25	$\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{NH} \cdot \mathrm{CS} \cdot \mathrm{CH}_{2} \cdot 4 \mathrm{Py}$		－）	（－）	1480 ＊	45	1453＊	65	1079＊	25	1028	15
26	$\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Me}$	1609	15		1497	40	1455	80	1079	35	1028 †	35
27	$\mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$	1609	15	15	1495	40	1454	65	1078	55	1029	
28	$\mathrm{CH}_{2} \cdot \mathrm{Ph}$	1601	30	1587＊ 15	1491	75	1450	50	1075	30	1029	35
29	$\mathrm{CH}_{2} \cdot 4 \mathrm{Py}$			（－）	1493	40	1452	25	$1069 \dagger$	30	1029	15
30	$\mathrm{CH}_{2} \cdot 2 \mathrm{Py}$			（－）	1493	40	1451	30	1072	10	1029	15
31	$\mathrm{CH}_{2} \cdot 4 \mathrm{PyO}$	1603	20		$1485 \dagger$	280	$1450 \dagger$	80	1071	10	1030	30
32	$\mathrm{CH}_{2} \cdot 2 \mathrm{PyO}$	1607	30		$1490+$	105	1454＊	40	1074	15	1030	10
33	$\mathrm{CH}_{2} \cdot \mathrm{CO} \cdot \mathrm{NH} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot 4 \mathrm{Py}$			（－）	1495＊	155	1454	60	（		1028	20
34	$\mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Me}$－	1609	15	1590＊ 10	1497	50	1457	55	1075	15	1030＊	20
35	$\mathrm{CH}_{2} \cdot \mathrm{CO}_{2} \mathrm{Et}$	1607	15	1587＊ 10	1497	40	1454	45	1074	25	$1028 \dagger$	15
36	$\mathrm{CH}_{2} \cdot \mathrm{NH} \cdot \mathrm{COCH}_{2} \cdot 4 \mathrm{Py}$		－）	（－）	1500＊	210	1452	55	1078	20	1027	15
37	$\mathrm{CH}_{2} \cdot \mathrm{~S} \cdot 4 \mathrm{Py}$	1608＊		（－）	1494	50	1453	50 195	$1069{ }^{(}$		1028	20
38	$\mathrm{CH}_{2} \cdot \mathrm{~S} \cdot 2 \mathrm{Py}$	1609＊		（－）	1495	60	1456	195	1069	25	1028	
39	$\mathrm{CH}_{2} \cdot \mathrm{~S} \cdot 4 \mathrm{PyO}$	1605	20		1496	50	1458＊	170	1070	25		
40	$\mathrm{CH}_{2} \cdot \mathrm{~S} \cdot 2 \mathrm{PyO}$	1608＊		（－）	1496	55	1454	65	1070	20	1028	20
41	$\mathrm{CH}_{2} \cdot \mathrm{O} \cdot 2 \mathrm{Py}$		一）	（－）	1495	35	1454	65			1026＊	50
42	$\mathrm{CH}_{2} \cdot \mathrm{O} \cdot 4 \mathrm{PyO}$		－）	（－）	1485 †	360	$1456 \dagger$	105	1079	10	1026＊	110
43	$\mathrm{CH}_{2} \cdot \mathrm{OH}$	1600	5		1492	15	1454	40	1075＊	15	1035＊	50
44	$\mathrm{CHPh} \cdot \mathrm{OH}^{a}$	1604		（－）	1497	80	1456	90	1081	15	1030＊	70
45	$\mathrm{CH}(4 \mathrm{Py}) \mathrm{OH}$		－）	（－）	1492	40	1453	45	1077	20	1025	70
46	$\mathrm{CH}(2 \mathrm{Py}) \mathrm{OH}$			（－）	1494	40	1457	60	1080	35	1027	90
47	$\mathrm{CH}: \mathrm{CH} \cdot \mathrm{Ph}$	1602		158215	1495	65	1451	60	1070	30	1028	20
48	$\mathrm{CH}: \mathrm{CH} 4 \mathrm{P} \mathrm{P}$		－）	（－）	1495	25	1450	30	1073	10	1027	5
49	$\mathrm{CH}: \mathrm{CH} \cdot 2 \mathrm{Py}$	$1592 \dagger$	180	（－）	1494	65	1451	45	1073	10	1029	5
50	$\mathrm{CH}: \mathrm{CH} \cdot 4 \mathrm{PyO}^{\text {c }}$	1600	15	$1580 \quad 10$	1493 ＊	150	$1452 \dagger$	75	1073	15	1032†	10
51	$\mathrm{CH}: \mathrm{CH} \cdot 2 \mathrm{PyO}$	$1610 \dagger$	50	157915	1493 ＊	75	1450	60	1071	15	1027	15
52	$\mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Me}$	1610＊	20	158130	1493	35	1451	115	1070	25	1026	30
53	$\mathrm{CH}: \mathrm{CH} \cdot \mathrm{CO}_{2} \mathrm{Et}$		－）	$1580 \quad 20$	1495	30	1450	80	1069	40	1028	95
54	$\mathrm{CH}: \mathrm{C}_{-}^{4 \mathrm{Py}} \mathrm{COM}^{4}$		－）	（－）	1493	55	（－		$1070 \dagger$	65	1027	20
55	$\mathrm{CH}: \mathrm{CH} \cdot 4 \mathrm{Py} \cdot \mathrm{BCl}_{3}{ }^{\text {d }}$		－）	1580＊ 50	（1493	30）	$(\mathrm{CHCl}$		（－）		1026＊	10
56	$\mathrm{C}: \mathrm{C} \cdot \mathrm{Ph}$	1608	55	1573 5	1500	125	1445	55	1070	30	1026	30
57	C：C•4Py	1608 ＊	＊ 165	（－）	1500	55	1445	25	1062＊	10	1025	15
58	C： $\mathrm{C} \cdot 2 \mathrm{Py}$	1601		（一）	1490	105	1443	20	1065	10	1025	10
59	$\mathrm{C}: \mathrm{C} \cdot 4 \mathrm{PyO}$	1600	30	－	1495	235	1445 †	55	1065	15	$1032 \dagger$	
60	Ph	1600		156815	1483	135	$\begin{aligned} & 1460 \\ & 1431 \end{aligned}$	15	1073	30	1042	15
61	4Py	1610＊	＊ 80	（－）	1480	55	1446＊	10	1076＊	15	1040	
62	3Py		－）	（－）		一）	1450	55	1072	10	$1023 \dagger$	30

Table 1. (Continued.)

No.	Substituent
63	2 Py
64	$4 \mathrm{PyO}{ }^{\text {b }}$
65	3 PyO
66	2 PyO
67	$\mathrm{SH}^{\text {a }}$
68	Cl
69	$\mathrm{Br}^{\text {a }}$
70	${ }^{\mathrm{C}} \mathrm{E} \mathrm{N}^{\text {a }}$
71	$\mathrm{CO} \cdot \mathrm{NH} \cdot 4 \mathrm{Py}{ }^{\text {d }}$
72	$\mathrm{CO} \cdot \mathrm{NH} \cdot 3 \mathrm{Py}$
73	$\mathrm{CO} \cdot \mathrm{NH} \cdot 2 \mathrm{Py}$
74	$\mathrm{CO} \cdot \mathrm{NH} \cdot 2 \mathrm{PyO}$
75	$\mathrm{CO} \cdot \mathrm{NMe} \cdot 3 \mathrm{Py}$
76	$\mathrm{CO} \cdot \mathrm{NMe} \cdot 2 \mathrm{Py}$
77	$\mathrm{CO} \cdot \mathrm{NMe} \cdot 4 \mathrm{PyO}$
78	$\mathrm{CO} \cdot \mathrm{NMe} \cdot 2 \mathrm{PyO}$
79	$\mathrm{CO}_{2} \mathrm{Me}$
80	$\mathrm{CO}_{2} \mathrm{Et}$
81	$\mathrm{CO}_{2} \mathrm{CMe}(\mathrm{CN}) \cdot 4 \mathrm{Py}$
82	CHO
83	COMe
84	$\mathrm{CO} \cdot \mathrm{CH}_{2} \cdot 4 \mathrm{Py}$
85	NO_{2}

Assignments of symmetry and type of vibration (from ref. 12) are given at tops of columns.

* Shoulder, \dagger absorption considered to be the superimposition of two peaks, - absence of absorption, (-) band masked by stronger absorption, $\left(\mathrm{CHCl}_{3}\right)$ band masked by solvent, Ph phenyl, Py substituted pyridine(4Py = 4-pyridyl, etc.), PyO substituted pyridine 1-oxide.
ε_{A} in italics denotes absorption by two benzene rings.
${ }_{a}^{\varepsilon_{A}}$ These substances were measured at Cambridge, the others at Oxford. ${ }^{b}$ Extra band at 1301 (20). Extra band at 1145 (85). ${ }^{d}$ Measured at 0.02 m in 1 mm . cell because of poor solubility. © Morph olide. f Arithmetical means and standard deviations reported by Randle and Whiffen. ${ }^{12}$

Table 2.

shoulder at $1458 \mathrm{~cm} .^{-1}$. This band is often overlapped by substituent $\mathrm{C}-\mathrm{H}$ deformations, sometimes making interpretation of the intensities difficult.

Bands at 1200-1100 cm..$^{-1}$ (Table 2, cols. 1 and 2).-Randle and Whiffen ${ }^{12}$ found two bands in practically all the spectra examined. We find that most of the compounds with
electron-donating substituents absorb at $1181-1170 \mathrm{~cm} .^{-1}(15-100)$ and $1160-1150 \mathrm{~cm} .^{-1}$ ($10-45$). Of the remaining seventy-one compounds, forty-three absorb ($\varepsilon_{\mathrm{A}}>10$) in this region; however, all bands could be assigned to substituents. In agreement, McMurry and Thornton ${ }^{15}$ found these bands in hydrocarbons at $1184-1176$ and $1160-1152 \mathrm{~cm} .^{-1}$ with average ε_{A} of (5) and (4), Tr respectively.

Band Near $1070 \mathrm{~cm} .^{-1}$ (Table 1, col. 5).-All the compounds except aniline and ethylbenzene absorb at $1082-1065[1073 \pm 4] \mathrm{cm}^{-1}$; for certain groups the range is less, e.g., olefins absorb at $1073-1069 \mathrm{~cm} .^{-1}$, heteroaryl compounds at $1078-1072 \mathrm{~cm} .^{-1}$. Split bands and abnormally high intensities occur if a heavy atom is attached directly to the ring. For halogenobenzenes, Randle and Whiffen ${ }^{12,16}$ showed that this is because a vibration in which the substituent moves appreciably absorbs in that region for heavy substituents \{their values in carbon disulphide are in reasonable agreement with ours: $\mathrm{PhCl} 1083 \mathrm{~cm} .^{-1}(109), \uparrow \mathrm{PhBr} 1070 \mathrm{~cm} .^{-1}$ (119) $\}$; similar behaviour in other series ${ }^{1-6}$ can thus be explained. The intensity is low ($10-25$) [($15 \pm 5)]$ for weakly conjugating substituents (Nos. 18-66) except for one alcohol (No. 46, strongly overlapped by substituent absorption) and some esters (Nos. 26, 27, 53). Electron-donating (Nos. 1-17) and electron-accepting (Nos. 70-85) substituents cause somewhat higher intensities $(10-50)[(25 \pm 10)]$; esters Nos. 79 and 80 absorb more strongly.

Band Near $1030 \mathrm{~cm} .^{-1}$ (Table 1, col. 6).-Compounds with a saturated or olefinic carbon atom next to the ring (Nos. 18-55) absorb at $1030-1025[1028 \pm 1] \mathrm{cm} .^{-1}$ (except No. 50 where the band at $1032 \mathrm{~cm} .^{-1}$ is due mainly to substituent absorption); the intensity is low (5-20) $[(15 \pm 5)]$ (except Nos. $31,45,46$ which are strongly overlapped by substituent absorption). Acetylenic substituents cause absorption at $1026-1025 \mathrm{~cm}^{-1}$ (except No. 59, cf. No. 50) ($10-15$). The position is variable, $1042-1016 \mathrm{~cm}^{-1}$ ($10-65$), for compounds with another aromatic ring directly attached to the nucleus; similar behaviour occurs in other series often making it difficult to assign bands in this region to a specific aromatic ring. Electron-donating (Nos. 1-17) and electron-accepting (Nos. 7085) substituents cause absorption at slightly lower frequencies, $1031-1022 \mathrm{~cm} .^{-1}(5-35)$ $\left[1026 \pm 3 \mathrm{~cm} .^{-1}(20 \pm 10)\right]$ and $1030-1021 \mathrm{~cm} .^{-1}(10-80)\left[1026 \pm 3 \mathrm{~cm} .^{-1}(35 \pm 20)\right]$, respectively. The positions and intensities for $\mathrm{PhMe} 1031 \mathrm{~cm} .^{-1}(22)$ T; $\mathrm{PhEt} 1031 \mathrm{~cm} .^{-1}$ (18); $\mathrm{PhCl} 1023 \mathrm{~cm} .{ }^{-1}(91) ; \mathrm{PhBr} 1021 \mathrm{~cm} . .^{-1}(106)$ in carbon disulphide ${ }^{16}$ solution and the values $1032-1027 \mathrm{~cm}^{-1}(20) \mathbb{}{ }^{15}$ for hydrocarbons are in reasonable agreement with our data.

Band Near $1000 \mathrm{~cm} .^{-1}$.-Most electron-donating groups cause absorption at 1002$990 \mathrm{~cm} .^{-1}(10-50)$ (Table 2, col. 3). Compounds with two aromatic rings directly attached to each other \{substituent is given: Ph, $1007 \mathrm{~cm} .^{-1}$ (35) ; 4-Pyridyl, 1000 (20); 3-Pyridyl, 992 (15); 4-Pyridyl oxide, 999 (10); 3-Pyridyl oxide, $998 \dagger$ (30); 2-Pyridyl oxide, 999 (15) \}, the halogenobenzenes $\left\{\mathrm{Cl}, 1001 \mathrm{~cm}^{-1}(10) ; \mathrm{Br}, 998\right.$ (45) $\}$, and a few other compounds $\left\{\mathrm{CH}_{2} \mathrm{~S} \cdot 4 \mathrm{Py}, 996 \mathrm{~cm} .^{-1}\right.$ (15); $\mathrm{CO}_{2} \mathrm{Et}, 999$ (25) $\}$ also absorb in this region.

Band Near $900 \mathrm{~cm}^{-1}$.-Most electron-donating substituents cause absorption at 898$860 \mathrm{~cm} .^{-1}$ (10-20) (Table 2, col. 4). In addition, absorption is shown in this region for those compounds in which a saturated carbon atom next to the ring carries an oxygen atom $\left\{\mathrm{CH}_{2} \mathrm{O} \cdot 2 \mathrm{Py}, 905 \mathrm{~cm} .^{-1}(15) ; \mathrm{CH}_{2} \mathrm{O} \cdot 4 \mathrm{PyO}, 914(20) ; \mathrm{CH}_{2} \cdot \mathrm{OH}, 905(10) ; \mathrm{CH} \cdot \mathrm{Ph} \cdot \mathrm{OH}\right.$, $915(20)$; $\mathrm{CH}(4 \mathrm{Py}) \mathrm{OH}, 918(10)$; $\mathrm{CH}(2 \mathrm{Py}) \mathrm{OH}, 918(15)\}$, for ethynyl substituents $\{\mathrm{C}: \mathrm{C} \cdot \mathrm{Ph}$, 914 (25); C:C•4PyO, 915 (15)\}, for aminocarbonyl-compounds \{CONH•4Py, 885 (15); CONH•3Py, 888 (15); CONH•2Py, 891 (20); CONH $\cdot 2 \mathrm{PyO}, 895$ (55); CONH $\cdot 3 \mathrm{Py}, 874$ (10); CONMe•Ph, 874 (15); CONMe•2Py, 883 (10); CONMe•2PyO, $885 \dagger(80)$, and for a few other compounds $\{\mathrm{Ph}, 905$ (15); CN, 922 (15) $\}$. For hydrocarbons, McMurry and Thornton ${ }^{15}$ found a band at $909-897 \mathrm{~cm}^{-1}(9)$ T.

Substituent Bands.-Absorption bands due to ester, aldehyde, and ketone groups, ${ }^{9}$

[^2]$2-$ - ${ }^{3,17} 3$-, ${ }^{1}$ and 4 -substituted pyridine, ${ }^{2,17}$ and $2-,{ }^{5} 3$-, ${ }^{6}$ and 4 -substituted pyridine 1 -oxide ${ }^{4}$ rings have been published. All the bands in the spectra of the methyl and ethyl esters (Nos. 26, 27, 34, 35, 52, 53, 79, and 80), benzaldehyde (No. 82), acetophenone (No. 83), and the phenylpyridines and their l-oxides (Nos. 60-66) have been reported now; bands not correlated (four in the above seventeen compounds) are given in footnotes to the Tables.

In addition to the bands characteristic of the rings, benzylpyridines and their oxides (Nos. 28-32) show shoulders at $c a .1430 \mathrm{~cm}^{-1}$ where this region is not obscured $\left\{\mathrm{Ph} \cdot \mathrm{CH}_{2} \cdot \mathrm{Ph}, 1434^{*}(20)\right.$; $\mathrm{Ph} \cdot \mathrm{CH}_{2} \cdot 4 \mathrm{Py}, 1435 *(30) ; \mathrm{Ph} \cdot \mathrm{CH}_{2} \cdot 4 \mathrm{PyO}, 1430 *(30)$; $\mathrm{Ph} \cdot \mathrm{CH}_{2} \cdot 2 \mathrm{PyO} 1420$ * (50)\}; this is possibly the scissor CH_{2} vibration displaced from its normal position at ca. $1465 \mathrm{~cm} .^{-1} .{ }^{10 d}$

Benzylthio- (Nos. 37-40) and phenylethyl-pyridines and their oxides (Nos. 20-24) show no additional bands (with $\varepsilon_{\mathrm{A}} \geqslant 15$) except those at $1106 \mathrm{~cm} .^{-1}(50)$ in $4 \mathrm{Py} \cdot \mathrm{SCH}_{2} \mathrm{Ph}$ which is probably an X-sensitive nuclear band of the pyridine nucleus (cf. halides above) and at $1420^{*}(55)$ in $2 \mathrm{PyO} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{Ph}$ which is probably due to the CH_{2} group; others are evidently either hidden by the nuclear absorption or have $\varepsilon_{\mathrm{A}}<15$. The $\alpha-\mathrm{CH}_{2}$ group in 2 -substituted pyridine 1 -oxides could show abnormal absorption.

Reproducibility of Intensity with Different Machines.-Some spectra were measured at Cambridge, the others at Oxford (see footnote to Table 1). To establish the validity of comparing these spectra, the reproducibility of intensities measured on different instruments was investigated. The spectrum of 4 -nitropyridine 1 -oxide was measured in duplicate or triplicate using three Perkin-Elmer and two Unicam instruments; \| statistical treatment of the intensities gave the results shown in Table 3. Later, a fourth PerkinElmer instrument gave intensities which in two runs were (a) 0 to $25 \%[11 \pm 7] \%$ and (b) -2 to $19[7 \pm 7] \%$ higher than the arithmetical means in Table 4. Thus, apparent extinction coefficients measured under standard conditions, but without any elaborate precautions and with different instruments, are a valuable measure of intensity for diagnostic purposes.

Table 3. Statistical treatment of apparent extinction coefficients.

Position of band	Range	Arith. mean	Standard deviation	$\begin{aligned} & \text { Deviation } \\ & \text { as } \% \\ & \text { of mean } \end{aligned}$	Position of band	Range	Arith. mean	Standard deviation	Deviation as \% of mean
$1605 \mathrm{~cm} .^{-1}$	195-270	240	23	10	$1297 \mathrm{~cm}^{-1}$	370--460	410	23	5
1585	135-160	145	8	6	1286	370-480	435	32	7
1527	210-360			-a	1240	40-45	-	-	- ${ }^{\text {b }}$
1517	$210-260$	240	14	6	1170	105-130	115	9	8
1470	210-300	265	25	9	1120	370--490	430	39	9
1444	25-35	30	4	13	1089	25-50	35	9	$26^{\text {c }}$
1353	270-340	310	19	6	1023	65-95	85	8	10
1343	430-540	500	31	6	869	120-180	155	14	9
					852	190-280	230	28	12

[^3]
Experimental

Preparation of Compounds.-The preparations for the pyridines and pyridine 1-oxides have been reported; other compounds were commercial products or were prepared by standard procedures. All compounds were recrystallised or redistilled immediately before measurement.

Measurement of Spectra.-At Oxford, a Perkin-Elmer model 21 instrument was used with an NaCl prism, slit programme 4, and the settings previously reported. ${ }^{9}$

The spectra measured at Cambridge were obtained with a Perkin-Elmer model 21 spectrometer with an NaCl prism and the following settings: gearing, $\mathbf{l} \mathrm{cm}$. per $100 \mathrm{~cm} .^{-1}$ in the
|| One instrument of another make appeared to give considerably higher results.
${ }^{17}$ R. A. Jones and Katritzky, J., 1958, 3610.

4162 Katritzky: Infrared Absorption of Heteroaromatic and

$4000-2000 \mathrm{~cm} .^{-1}$ region and 4 cm . per $100 \mathrm{~cm} .^{-1}$ between 2000 and $600 \mathrm{~cm} .^{-1}$; gain 2 ; other settings as in ref. 9.0 .179 m -Solutions in purified chloroform were measured in a 0.112 mm . compensated cell.

Apparent Extinction Coefficients.-In this as in all our previous work, intensities were calculated from $\varepsilon_{\mathrm{A}}=(1 / C l) \log _{10}\left(I_{0} / I\right)$, where C is concentration in moles per litre, and l is cell length in cm .

As solutions were measured at the same concentration and in the same cell, a given percentage absorption always corresponded to the same ε_{A}, apart from the base-line correction. Measurement of the intensities was facilitated by the construction of a series of rulers for use with different base lines, which permitted ε_{A} values to be read directly from the graphs.

We thank Drs. G. Eglinton, C. J. Timmons, and D. Meakins for their co-operation in the comparison of intensities and Dr. N. Sheppard for reading the manuscript. Part of this work was done during the tenure (by A. R. K.) of an I.C.I. Research Fellowship.

[^4]
[^0]: ${ }^{9}$ Katritzky, Monro, Beard, Dearnaley, and Earl, J., 1958, 2182.
 10 Jones and Sandorfy in Weissberger, "Technique of Organic Chemistry, Vol. IX. Chemical Applications of Spectroscopy," Interscience Publ. Inc., New York, 1956: (a) p. 388, (b) p. 397, (c) p. 392, (d) p. 343.
 ii Bellamy, "The Infrared Spectra of Complex Molecules," Methuen, London, 1956: (a) p. 64, (b) p. 57, (c) p. 55, (d) pp. 59-63.

 12 Randle and Whiffen, Report on Conference on Molecular Spectroscopy, 1954, Institute of Petroleum, Paper No. 12.
 ${ }_{13}$ Depaigne-Delay and Lecomte, J. Phys. Radium, 1946, 7, 38.
 14 Josien and Lebas, Bull. Soc. chim. France, 1956, 53, 57.
 15 McMurry and Thornton, Analyt. Chem., 1952, 24, 318.

[^1]: \ddagger Throughout this paper values in parentheses are apparent molecular extinction coefficients. Values in brackets are arithmetical means and standard deviations of the positions and intensities, calculated by omitting those compounds where the band is present as a shoulder, and, in the case of ε_{A}, those in which it is superimposed on another band or the result of absorption by more than one benzene ring in different environments. When the molecule contains two benzene rings in the same environment, $\varepsilon_{\mathbf{A}}$ values are halved in the statistical treatment.

[^2]: If Values so marked are converted into $\varepsilon_{\boldsymbol{A}}$ from units used in the original papers.
 ${ }^{18}$ Randle and Whiffen Trans. Faraday Soc., 1956, $52,9$.

[^3]: ${ }^{a}$ This peak not resolved properly on Oxford Perkin-Elmer machine, probably because of wavelength linearity and speed. ${ }^{b}$ Peak resolved only on Unicam machines. ${ }^{c}$ High standard deviation because one Unicam machine had much higher value.

[^4]: University Chemical Laboratory, Cambridge.
 Dyson Perrins Laboratory, Oxford.

